
M.C.A (Third Semester) Examination,2013

Theory of Computation

Paper: Fourth

1. i)

a) uvu= aab bbbab aab

b) null followed by u = aab

c) u followed by null = aab

d) u followed by null followed by v = aab bbbab

--

1. ii) Description of Automaton
An automaton can be defined in an abstract way by the

following figure.

I1

O

1

I2

Automaton O

2

Ip

q1,q2,……….qn O

q

Model of a discrete automaton

i) Input: - At each of the discrete instants of time

t1,t2,…..input values I1,I2……… each of which can take a

finite number of fixed values from the input alphabet ∑, are

applied to the input side of the model.

ii) Output : - O1,O2….are the outputs of the model, each of

which can take finite numbers of fixed values from an output O.

iii) States : - At any instant of time the automaton can be in

one of the states q1,q2…..qn

iv) State relation : - The next state of an automaton at any

instant of time is determined by the present state and the present

input. ie, by the transition function.

v) Output relation : - Output is related to either state only or

both the input and the state. It should be noted that at any instant

of time the automaton is in some state. On 'reading' an input

symbol, the automaton moves to a next state which is given by

the state relation.

--

1. iii) Reduced grammar: A grammar which does not contain

any useless symbols or productions that will never be used in

any derivation process are reduced grammars.

 Ex- S->AB | a

 B->b can be reduced to S->a as S->AB and B-> b will

never be used in the derivation process.

--

1. iv) δ(Q, Input, A) ={ (Q,α) | A->α is in P}

 δ(Q,a,a) = {(Q, null)} for every a in ∑

Where Q states, A € VN α€ (VU∑)* and a ϵ ∑

1. V.

1. Vi, The pumping lemma is very useful to prove whether

certain sets are regular or not. To perform this the steps used

are

1) assume L is regular. Let n be the number of states in the

corresponding FA

2) Choose the string W such that |W| >=n. use pumping lemma

to write W = xyz

With conditions |xy| <=n and |y| >0

3) Find a suitable integer such that xyiZ does not belongs to L.

this contradicts our assumption . hence L is not regular.

Vii) In bottom up parsing parsing takes place from the terminal

nodes to the root node. In bottom-up parsing the derivation tree

is traversed from the given input string to the start of the

grammar symbolEx: S-> AB

A-> a

B-> b

For string ab

=aB (Using transition rule B->b)

=AB (Using transition rule A->a)

=S (Using transition rule S->AB

In Top down parsing takes place from the root nodes to the

terminal nodes. In top-down parsing the derivation tree is

traversed from the start symbol of the grammar to the terminal

nodes. of the grammar symbol.

Ex: S-> AB

A-> a

B-> b

S-> AB (Using transition rule S->AB

S->aB (Using transition rule B->b)

S->ab (Using transition rule A->a)

1. viii) abba + bbba + abab

1. ix) In deterministic finite automation no input symbol

causes to move more than one state or state does not

contain more than one transition from same input symbol.

In NFA one input sumbol causes to move more than one

state or a state may contain more than one transition from

same input symbol.

 DFA NFA

--

1. x) Languages generated from regular grammar are regular

languages. For example

 S->aSa | b

 So L = { anban}={aba,aabaa,aaabaaa,aaaabaaaa,………….}

--

SECTION-B

2.i) a(a+b)*a

 ii) bb(bbb)*

b)

remainder set consists of { 0,1,2,3,4} -> { q0,q1,q2,q3,q4}

(q0,0) -> 2X0+0= 0->q0

(q0,1) -> 2X0+1= 1->q1

(q1,0) -> 2X1+0= 0->q2

(q1,1) -> 2X1+0= 1->q3

(q2,0) -> 2X2+0= 0->q4

(q2,1) -> 2X2+0= 1->q0

(q3,0) -> 2X3+0= 0->q1

(q3,1) -> 2X3+0= 1->q2

(q4,0) -> 2X4+0= 0->q3

(q4,1) -> 2X4+0= 1->q4

--

3 .a)

 3. b) Dead state : The state which is not a final state and ends

in itself upon the application of any input signals.

Unreachable state: Unreachable states are the states which are

not reachable from the initial states upon the application of any

input sequence.

Non distinguishable state: Two states are said to be non

distinguishable states if upon the application of same input to

the two states they yield same state as output.

--

4. a) A context free grammar G such that some word has two parse trees is said

to be ambiguous. A grammar which generates two or more parse tree for the same

grammar.

The given grammar is ambiguous because for the same string abaa it produces two

derivation tree by using the derivations

S->SbS->abS->abSa->abaa S->Sa->SbSa->Sbaa->abaa

The parse tree of the above derivations are different . Thus the language is

ambiguous.

a) DFA accepting 111

 1

 0 1

 Q0 Q0 Q0,Q1

 Q1 null Q2

 Q2 null Q3

 *Q3 Q3 Q3

 0 1

Q0 Q0 Q0,Q1

Q0,Q1 Q0 Q0,Q1,Q2

Q0,Q1,Q2 Q0 Q0,Q1,Q2,Q3

*Q0,Q1,Q2,Q3 Q0,Q3 Q0,Q1,Q2,Q3

*Q0,Q3 Q0,Q3 Q0,Q1,Q3

*Q0,Q1,Q3 Q0,Q3 Q0.Q1,Q2,Q3

 0 1

*Q0 Q0 Q0,Q1

*Q0,Q1 Q0 Q0,Q1,Q2

*Q0,Q1,Q2 Q0 Q0,Q1,Q2,Q3

Q0,Q1,Q2,Q3 Q0,Q3 Q0,Q1,Q2,Q3

Q0,Q3 Q0,Q3 Q0,Q1,Q3

Q0,Q1,Q3 Q0,Q3 Q0.Q1,Q2,Q3

--

5. a)Phase1: W0= { B, C} as B-> null , C-> null

 W1= { A, B,C, S} as A-> BC and S-> ABaC

Phase II S-> ABaC | BaC | ABa | A aC | Aa | Ba | ac | a

As A-> BC and B and C has multiple option

So A-> B | C | BC

D->d is included

5.b

A PDA is defined as 7 tuple notation
M=(Q,∑, ┌, δ,q0,z0,F)

Where Q= finite set of states
∑ = Input alphabet
┌ = is an alphabet called the stack
Q0= is the initial state q0 € Q

F is set of final states F subset / equal to Q
δ is a transition mapping δ = QX (∑ U { €}) X ┌ -> Q X ┌*

 Basic model of PDA consists of 3 components:

i) an infinite tape
ii) a finite control
iii) a stack

Now let us consider the ‘concept of PDA’ and the way it

‘operates’.

Input Tape

Read-write Head

Finite

Control

Stack

PDA has a read only input tape, an input alphabet, a finite

state control , a set if initial states, and an initial state . in

addition it has a stack called the pushdown stack. It is a read-

write pushdown store as we add elements to PDS or remove

element from PDS. A finite automation is on some state and on

reading, an input symbol moves to a new state. The push down

automaton is also in some state and on reading an input symbol

, the topmost symbol ,it moves to a new state and writes a string

of symbols in PDS.

Example 1: Construct a PDA that accepts the language

.

, and consists of the following transitions

(using transition 1)

(using transition 2)

(using transition 3)

(using transition 4)

(using transition 5)

is final state. Hence ,accept. So the string aabb is rightly

accepted by M.

6.a) Phase 1: W0= { A, S}
 As A->b and S->a

 Phase II: S->a

 b) d(q0,B)= (q0,B,R)
 d(q0,a)= (q1,B,R)
 d(q1,a)= (q1,a,R)
 d(q1,b)= (q1,b,R)
 d(q1,B)= (q1,B,L)
 d(q1,b)= (q2,B,L)
 d(q2,b)= (q3,B,L)
 d(q3,b)= (q4,B,L)
 d(q4,b)= (q4,b,L)
 d(q4,a)= (q4,b,L)
 d(q4,B)= (q0,B,R)
 d(q0,null)= qf

7 a) S->a AS

 S->abSS (as A->bS)

 S -> abaS (as S->a)

 S->abaaAS (as S->aAS)

 S-> abaabSS (as A->bS)

 S-> abaabaS (as S->a)

 S->abaabaa (as S->a)

--

7.b

--

8.a.

i) a or b followed by b or c over the alphabet a,b,c

ii) all binary number precced by 1

iii) String accepting only zero

iv) Set of string over 0 and 1 where 0 or 1 is followed by zero or

any numbers of 11

--

8.a

 i) a or b followed by b or c over the alphabet a,b,c

 ii) all binary number precced by 1

 iii) String accepting only zero

 iv) Set of string over 0 and 1 where 0 or 1 is followed by zero

or any numbers of

 11

--

8.b Context free Language: Languages formed from contex free

grammar is contex fre e language

Definition(Contex free grammar)

A CFG can be defined as G=(V,T,P,S) where V is the set of

non terminals, T is the set of terminals, S is the start symbol and

P is the set of productions of the form A->α where A belongs to

VN, αϵ(VUT)*.

Derivation tree (Parse tree)

The derivation in a CFG can be represented by using trees

called ‘derivation tree’ or ‘parse tree’. A derivation tree for a

CFG is a tree satisfying the following :

i) every vertex has a label which is a variable (non

terminal) or terminal.

ii) The root has label which is non terminal

iii) The label of an internal vertex is a variable.

ie, a derivation tree is a labeled tree in which each internal

node is labeled by a non terminal and leaves are labeled by

terminals. Strings formed by labels of the leaves traversed from

left to right is called the ‘yield of the parse tree’. Ie, the yield of

a derivation tree is the concatenation of the labels of the leaves

without repetition in the left-to-right ordering.

Eg: Let G=({S,A},{a,b},P,S)

where P is defined as S-> aAS/a,

A->b

S->aAS->aaASS->aabaa

A language is called type 1 or context dependent if its grammar

contains all its production as type 1 productions. The production

S-> null is also allowed in a type 1 grammar but in this case S

does not appear on tht right hand side of any production.

 Type 1 production : A production of the form φAψ->φαψ is

called a type 1 production if α not eqal to null

2A->1B

B->0

A Language is called a context free Language if its grammar

contains all type 2 production language

A type 2 production is a production of the form A->α where A

€ Vn and α (Vn U ∑)*

Example S-> Aa, A->a

